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Force distribution in an inhomogeneous sandpile

J.M. Huntleya

Loughborough University, Department of Mechanical Engineering, Loughborough LE11 3TU, UK

Received 29 January 1998 and Received in final form 7 September 1998

Abstract. The force perturbation field in a two-dimensional pile of frictionless gravity-loaded discs or
spheres arising from lattice distortions is derived to first order. The starting point is the model proposed
by Liffman et al. (Powder Technology (1992) pp. 255-267) and Hong (Phys. Rev. E 47, 760-762 (1993))
in which discs of uniform size are arranged on a regular lattice: this predicts a uniform normal stress
distribution at the base of the pile. The analysis is applied to two problems: (i) deformable (rather than
rigid) grains that undergo Hertzian deformation at the points of contact; (ii) a pile containing a gradient
in particle size from the centre to the free surfaces. The former results in the classical pressure dip at the
centre; the latter also produces a dip if the larger particles are at the centre.

PACS. 81.05.Rm Porous materials; granular materials – 46.10.+z Mechanics of discrete systems – 83.70.Fn
Granular solids

1 Introduction

The stress analysis of granular materials has generated
much interest within the physics community in recent
years. This has been motivated in part by counter-intuitive
experimental measurements, in particular the pressure
dips observed beneath the centres of conical sandpiles
[1,2]. Figure 1 shows an example from [2]. Numerical ap-
proaches [3,4] and analytical solutions [5–16] have been
developed to try to explain such a phenomenon. None have
so far succeeded in providing a completely satisfactory ex-
planation from first principles. The difficulty in developing
adequate theories arises for two main reasons: firstly ma-
terial non-linearity (for example, the stiffness is zero in
tension, non-zero in compression); and secondly the lack
of a unique force distribution for a given arrangement of
the grains.

The theoretical solutions fall into two main camps:
continuum approaches [5–8] and microscopic models
[9–16]. Of the former, the approach by Wittmer et al. [8],
in which the orientation of the stress tensor is assumed to
be constant at all points in the pile throughout the process
of heap formation, has so far proved the most successful in
providing solutions which are in good agreement with the
available experimental data [2,8]. The microscopic mod-
els are somewhat simplistic, requiring for example the as-
sumption of a regular lattice of grains, but can neverthe-
less be useful in giving exact analytical solutions which
may provide insight into the more complicated real-life
problem. The simplest of these is a pile of uniform smooth
discs balanced on a rough floor on a regular diamond lat-
tice [9,11,13]. This may be modified by randomness in
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Fig. 1. Experimental force distribution along the diameter of
a sandpile (average of three piles), measured from the contact
diameters of a monolayer of ball bearings on silicone rubber
(from [2]).

the positions of the grains in the base [10], vacancies in
the pile [14], friction [16] and the presence of horizontal
contacts between grains [12]. The latter modification pro-
duced interesting results: in general terms, horizontal com-
pressive forces generate a dip in the vertical component of
force at the centre of the pile [4,12], whereas horizontal
tensile forces generate a peak [15].

An interesting class of microscopic models which has
developed recently is based on statistical rules for the
transmission of force from a given grain to the support-
ing grains in the layer below [17–20]. Plausible assump-
tions for the transmission probabilities allow analytical
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Fig. 2. Model granular pile arranged on a diamond lattice.
The pile consists of p− 1 layers (p = 10 in this example). The
support discs in the lowest layer are regarded as equivalent to
the asperities on a rough floor.

expressions for the force probability density functions
within the pile or bed to be derived. Such models pre-
dict both the large force fluctuations and the force net-
works that are observed experimentally [2,17]. Exact cal-
culations for the force networks in two-dimensional arrays
of frictionless discs with small random variations in diam-
eter have also been carried out numerically [21,22]. These
indicated that the force distribution was essentially homo-
geneous at length scales greater than about ten particle
diameters, thus providing justification for the use of tra-
ditional continuum mechanics approaches.

The basic approach adopted in the present paper is to
investigate the effect of small deviations from the perfect
frictionless diagonal packing arrangement analysed pre-
viously [9,11,13]. Three sources of irregularity are con-
sidered: (i) statistical fluctuations in the positions of the
support grains and disc diameters; (ii) elastic (Hertzian)
deformation of the grain-grain contacts; and (iii) varia-
tions in particle size with position in the pile. The formula-
tion developed in the paper allows the changes in pressure
distribution for all three cases to be calculated analyti-
cally to first order in the parameter describing the pertur-
bation. The results can therefore be viewed as providing
a first step from the idealised regular sandpiles analysed
recently in the literature towards the disordered sandpile
encountered in real life.

The analysis is broken down into two steps. Firstly the
displacement vector of each grain from its regular-lattice
position (see Fig. 2), denoted by r(i, j), is determined as a
function both of the displacement vectors of the support
discs and of the disc sizes throughout the pile. Secondly,
it is shown that the equations of equilibrium for disc (i, j)
can be satisfied by the superposition of forces δI(i, j) and
δJ(i, j) acting along the i and j axes, respectively, which
are related to the first and second derivatives of r(i, j)
with respect to i and j. Integration of these forces from

θ θ
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d d

γd = 2∆x

∆y

Fig. 3. Arrangement of three disc centres for the case of a
regular lattice.

the free surfaces allows the total deviation in the vertical
force component to be calculated at the base of the pile.

2 Perturbation analysis

2.1 Force distribution for the regular lattice

The starting point for the analysis is the regular-lattice
model shown in Figure 2, which consists of p − 1 layers
of discs, each of diameter d. p = 10 in this example. A
non-orthogonal coordinate system (i, j) with axes along
the surface diagonals will be used in the analysis. The
horizontal spacing of the discs (γd: see Fig. 3) is chosen to
be large enough for horizontal contacts not to occur (i.e.,
γ > 1). The sand heap is only stable if the floor on which
it is standing is rough, and thereby capable of providing a
horizontal force inward to the centre of the heap. For this
model, we assume the roughness to be due to asperities of
the same spacing and diameter as the discs. This avoids
the need for friction at the contacts. The bottom row of the
pile (layer p−1) acts as this layer of asperities. In addition
to the (i, j) coordinate system, we define a conventional
Cartesian coordinate system (x, y) with its origin at the
centre of the pile.

The forces acting along the i and j axes will be denoted
by I and J , respectively. In the case of the regular lattice

I(i, j) = (i− 1)W/2s (1)

J(i, j) = (j − 1)W/2s (2)

are the values acting on grain (i, j) from above, where
W = mg is the weight of the disc (m is the mass) and s
is sin θ where θ is shown in Figure 3 [9,11,13]. The (x, y)
coordinates of the centre of disc (i, j) are

x(i, j) = (j − i)dc (3)

y(i, j) = (p− i− j)ds (4)

where c is cos θ.

2.2 Displacement field for the irregular lattice

In this section we derive the equation for the position of
each disc centre relative to that for the perfect lattice.
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If ∆x and ∆y are used to denote the separation (in the
Cartesian coordinate system) between the centres of any
two nearest neighbours (see Fig. 3), then one has

∆x2 +∆y2 = d2. (5)

When the support discs are not uniformly spaced, and/or
the discs have non-uniform diameters, then each disc is
displaced from its regular-lattice position by the vector
r =

(
δx(i, j), δy(i, j)

)
. Rewriting equation (5) for discs

(i, j) and (i+ 1, j) in the irregular lattice results in

[∆x+ δx(i, j)− δx(i+ 1, j)]
2

+ [∆y + δy(i, j)− δy(i+ 1, j)]
2

= [d+ δdi(i, j)]
2

(6)

where δdi(i, j) is the change in distance between the cen-
tres of the two discs. It will be assumed that |δx|, |δy| and
|δdi| � d. A Taylor expansion of equation (6) then results
in the following equation, valid to first order:

cδx(i, j)+sδy(i, j) = cδx(i+1, j)+sδy(i+1, j)+δdi(i, j).
(7)

Repeating this for discs (i, j) and (i, j + 1) results in

− cδx(i, j) + sδy(i, j) =

− cδx(i, j + 1) + sδy(i, j + 1) + δdj(i, j) (8)

where δdj(i, j) is the corresponding change in distance
between the centres of these two discs. Addition and sub-
traction of equations (7, 8) allows the displacement of disc
(i, j) to be expressed as follows:

r(i, j) = Ar(i+ 1, j) + Br(i, j + 1) + C(i, j) (9)

where

A =
1

2

(
1 t

1/t 1

)
B =

1

2

(
1 −t
−1/t 1

)
C(i, j) =

1

2cs

(
s −s
c c

)(
δdi(i, j)
δdj(i, j)

)
(10)

and where t = tan θ. Successive application of equation (9)
allows r(i, j) to be expressed in terms of the displacements
at progressively lower layers in the pile. Going two layers
down, we obtain

r(i, j) = Ar(i+ 2, j) + Br(i, j + 2)

+ AC(i+ 1, j) + BC(i, j + 1) + C(i, j). (11)

In deriving equation (11), the following relations were
used:

A2 = A

B2 = B

AB = BA = 0. (12)

i j

P

Q R

i,j

p–j,j i,p–i

Fig. 4. Displacement vector for a disc at position P (coordi-
nates (i, j)) from its regular-lattice position depends only on
the displacement vectors of the two discs at points Q and R,
together with the size deviations integrated along the lines PQ
and PR.

In general one can write

r(i, j) = Ar(i+ n, j) + Br(i, j + n) +
n−1∑
k=1

AC(i+ k, j)

+
n−1∑
k=1

BC(i, j + k) + C(i, j). (13)

Substitution of the value n = p−i−j gives r(i, j) in terms
of the displacements at the support discs. It is convenient
for the calculations in Section 3 to replace the sums by in-
tegrals. In the interests of simplicity, we also approximate
n− 1 by n, and neglect the term C(i, j). The relative er-
rors introduced by these approximations will tend to zero
as p→∞. With these changes, equation (13) becomes

r(i, j) = Ar(p− j, j) + Br(i, p− i)

+

∫ p−j

i

AC(i′, j)di′ +

∫ p−i

j

BC(i, j′)dj′. (14)

Once the position of the support discs has been decided,
the positions of the grains in each subsequent layer are
determined uniquely. If the discs are of uniform size, the
two integrals are zero and equation (14) shows that the
displacement of a given point (shown as P in Fig. 4) de-
pends only on the displacement vector of discs (p − j, j)
and (i, p − i) (Q and R, respectively, in Fig. 4). When d
varies throughout the pile, the displacement vector at P
also depends on the size deviations integrated along the
lines PQ and PR.

2.3 Force distribution

In this section we calculate the perturbation in the
regular-lattice force distribution at the base of the pile,
as a result of an arbitrary displacement field, r(i, j). The
analysis is based on satisfying the equilibrium conditions
for each grain in the pile. A representative disc, (i, j), is
shown in Figure 5. The contact forces are denoted by I ′

and J ′ where

I ′(i, j) = I(i, j) + δI(i, j)

J ′(i, j) = J(i, j) + δJ(i, j). (15)
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Fig. 5. Force diagram for a single disc in the pile.

The assumption that the contacts are frictionless means
that the forces are all radial and cannot therefore exert
any torque on the disc. The two remaining force balance
equations are obtained by resolving the forces horizontally
and vertically:

I ′(i+ 1, j) cos θ1 + J ′(i, j) cos θ4

− I ′(i, j) cos θ3 − J
′(i, j + 1) cos θ2 = 0 (16)

I ′(i+ 1, j) sin θ1 − J
′(i, j) sin θ4

− I ′(i, j) sin θ3 + J ′(i, j + 1) sin θ2 = W (17)

where the four angles θ1, . . . , θ4 are defined in Figure 5.
The corresponding equations for the regular lattice are

I(i+ 1, j)c+ J(i, j)c− I(i, j)c− J(i, j + 1)c = 0 (18)

I(i+ 1, j)s− J(i, j)s− I(i, j)s+ J(i, j + 1)s = W . (19)

Two simultaneous equations for the force perturba-
tions, δI and δJ , can be obtained by substituting equa-
tion (15) into equations (16, 17), expanding the trigono-
metric terms to first order in δθk (where θk = θ + δθk,
k = 1, 2, 3, 4) and subtracting equations (18, 19):

[δI(i+ 1, j) + δJ(i, j)− δI(i, j)− δJ(i, j + 1)] c

+
[
−I(i+ 1, j)δθ1 − J(i, j)δθ4

+ I(i, j)δθ3 + J(i, j + 1)δθ2

]
s = 0 (20)

[δI(i+ 1, j)− δJ(i, j)− δI(i, j) + δJ(i, j + 1)] s

+
[
I(i+ 1, j)δθ1 − J(i, j)δθ4

− I(i, j)δθ3 + J(i, j + 1)δθ2

]
c = 0. (21)

By taking linear combinations of equations (20, 21) and
using equations (1, 2) we obtain the following recurrence
relations for δI and δJ :

δI(i+ 1, j) = δI(i, j)

+
W

4s2c

[
(c2 − s2)

{
(i− 1)δθ3(i, j)− iδθ1(i, j)

}
+ (j − 1)δθ4(i, j)− jδθ2(i, j)

]
(22)

δJ(i, j + 1) = δJ(i, j)

+
W

4s2c

[
(c2 − s2)

{
(j − 1)δθ4(i, j)− jδθ2(i, j)

}
+ (i− 1)δθ3(i, j)− iδθ1(i, j)

]
. (23)

In what follows, the forces acting along the j axis will not
be derived directly. For a symmetrical sandpile, the δJ
perturbations can be obtained from the δI values, as will
be shown shortly.

The main interest is in the vertical component of the
forces acting on a grain, V ′(i, j), (= V (i, j) + δV (i, j),
where V (i, j) is the regular-lattice value and δV (i, j) is
the perturbation), which is given by

V ′(i, j) = I ′ sin θ3 + J ′ sin θ4. (24)

By expanding each term to first order in the perturbations,
we obtain the i-axis contribution to δV (i, j) as

δVI(i, j) =
Wc

2s
[(i− 1)δθ3] + sδI(i, j). (25)

The perturbations in the angles δθ1, . . . , δθ4 can be ex-
pressed in terms of the relative displacement vectors be-
tween the disc and its four nearest neighbours by taking
scalar products with unit vectors perpendicular to the i
and j axes:

δθ1(i, j) =
1

d

(
−s
c

)
· [r(i, j)− r(i+ 1, j)] (26)

δθ2(i, j) =
1

d

(
s
c

)
· [r(i, j)− r(i, j + 1)] (27)

and by using δθ3(i, j) = δθ1(i − 1, j) and δθ4(i, j) =
δθ2(i, j − 1).

Substitution of equations (26, 27) into equations
(22, 25) gives the required result: the vertical force per-
turbations as a function of the displacement field, r(i, j).
The term

{
(i − 1)δθ3(i, j) − iδθ1(i, j)

}
in equation (22)

can be written

(i− 1)δθ3(i, j)− iδθ1(i, j) =
1

d

(
−s
c

)
· [(i− 1)r(i− 1, j)− (2i− 1)r(i, j) + ir(i+ 1, j)]

≈
1

d

(
−s
c

)
·

[
∂

∂i

(
i∂r(i, j)

∂i

)]
(28)

where the finite difference equations

∂2r(i, j)

∂i2
≈ r(i− 1, j)− 2r(i, j) + r(i+ 1, j)

∂r(i, j)

∂i
≈ r(i, j)− r(i− 1, j) (29)

have also been used. A similar approximation for the
term (j − 1)δθ4(i, j) − jδθ2(i, j) results in the following
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Fig. 6. The perturbations in the vertical component of force
at point P can be found by carrying out the line integrals for
equation (32) along paths I and II.

differential equation

∂

∂i
[δI(i, j)] ≈

W

4s2cd

{
(c2 − s2)

(
−s
c

)
·

[
∂

∂i

(
i∂r(i, j)

∂i

)]

+

(
s
c

)
·

[
∂

∂j

(
j∂r(i, j)

∂j

)]}
. (30)

This can be integrated along a line parallel to the i axis
from the free surface (at which both δI(i, j) and i are zero)
to give the force perturbation at any point in the pile:

δI(i, j) =
W

4s2cd

{
(c2 − s2)

(
−s
c

)
·
i∂r(i, j)

∂i

+

(
s
c

)
·

∫ i

0

[
∂

∂j

(
j∂r(i′, j)

∂j

)]
di′

}
· (31)

Finally, by combining equations (25, 26, 29, 31) we obtain
the i-axis contribution to the perturbation in the vertical
force component:

δVI(i, j) =
W

4scd

{
−

(
−s
c

)
·
i∂r(i, j)

∂i

+

(
s
c

)
·

∫ i

0

[
∂

∂j

(
j∂r(i′, j)

∂j

)]
di′

}
· (32)

The j-axis contribution to δV (i, j) can be calculated in the
same way, but for piles which are symmetrical about the
y axis it is easier to make use of the symmetry, as shown
in Figure 6. The value of δVI(i, j) at point P (for which
j = j0, and i = p− j) is obtained by carrying out the line
integral of equation (32) along path II. The j-axis contri-
bution, which would require an integration along path III,
can instead be obtained by evaluating δVI(i, j) at point Q
(for which j = p − j0, and i = p − j). The required line
integral in this case is along path I.

3 Applications of the theory

3.1 Random perturbations

One possible modification to the regular lattice is the in-
troduction of some disorder to the pile, either by random

movements of the support discs, or by random changes in
particle size. Let the displacement vectors of the support
discs, r(p− j, j) be denoted X(j), and the deviation in di-
ameter of disc (i, j) be denoted Y (i, j). It will be assumed
that the X(j) and Y (i, j) are all independent random vari-
ables with zero means. Equation (14) shows that r(i, j) is a
linear combination of the X(j) and Y (i, j). Equation (32)
shows that δVI(i, j) is a linear combination of r(i, j) values
along the integration paths, and is therefore also a linear
combination of the X(j) and Y (i, j). By the central limit
theorem, the probability density function for the δVI(i, j)
values will therefore be approximately Gaussian with zero
mean. On the average, therefore, random perturbations
of the sort considered here have no effect on the pres-
sure profiles. A similar result was found numerically by
Bagster [10] for the case of random perturbations in the
support disc positions. This conclusion is of course only
valid for fluctuations that are small enough for second
and higher order terms to be neglected. Larger fluctua-
tions are beyond the scope of the present paper. In the
two remaining applications we consider the effect of sys-
tematic changes in the disc sizes arising from both grain
elasticity and polydispersity.

3.2 Effect of grain elasticity

In the simplest model (Sect. 2.1), the grains are assumed
to be rigid whereas in practice they have a finite Young’s
modulus. Most of the deformation takes place in the re-
gion of the contact between grains. Hertzian deformation
theory (see, for example, [23]) shows that

δdi(i, j) = −α [I(i+ 1, j)]β (33)

δdj(i, j) = −α [J(i, j + 1)]
β

(34)

where α and β are constants associated with the grain
geometry and material. For contact between two spheres
of radius R, Young’s modulus E and Poisson’s ratio ν,

α =

[
9(1− ν2)2

4RE2

]1/3

(35)

and β = 2/3. Combination of equations (10, 14, 33, 34)
results in the following displacement field:

r(i, j) =
χ

β + 1

{(
−s
c

)[
(p− i)β+1 − jβ+1

]
+

(
s
c

)[
(p− j)β+1 − iβ+1

]}
(36)

where

χ = −
α

2sc

(
W

2s

)β
· (37)

In deriving equation (36), the displacement vectors of the
support discs have all been taken to be zero. The effect
of a non-zero displacement field of the supports can, if
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required, be analysed separately and superposed on the
solution derived in this section.

The partial derivatives of equation (36) required to
calculate the force perturbations (Eq. (32)) are given by

i∂r(i, j)

∂i
= −χ

[(
−s
c

)
i(p− i)β

(
s
c

)
iβ+1

]
(38)

∂

∂j

(
j∂r(i, j)

∂j

)
= −χ

{(
−s
c

)
(β + 1)jβ

+

(
s
c

)[
(p− j)β − βj(p− j)β−1

]}
.

(39)

Substitution of these into equation (32) results in the fol-
lowing expression for the force perturbations at the bot-
tom layer of the pile:

δVI(i, j) =
−Wχ

4scd
(p− j)

{[
β(c2 − s2)− 2s2

]
jβ

+ 2s2(p− j)β − βj(p− j)β−1
}

. (40)

The total vertical force perturbation at point P (Fig. 6)
is obtained by summing the contributions from path I
(putting i = j0, j = p−j0) and path II (putting i = p−j0,
j = j0). This can then be normalised by dividing by the
regular-lattice value V = pW/2:

δV (p− j0, j0)

V
=

α

2c2dp

(
W

2s

)β
×

{
jβ+1
0 +(p−j0)β+1−(β+1)

[
(p− j0)jβ0 + j0(p− j0)β

]}
.

(41)

This expression can be simplified further by making the
following substitutions:

ε =
2α

d

(
Wp

4s

)β
(42)

is the fractional size change along the i-axis of the disc at
coordinates (p/2, p/2) due to the compression;

ξ =
j0 − (p/2)

p/2
(43)

is the normalised position under the heap (−1 < ξ < 1);
and

δF (ξ) =
δV (p− j0, j0)

V
(44)

is the fractional change in normal load at coordinate ξ.
The result is

δF (ξ) =
ε

8c2

{
(1 + ξ)β+1 + (1− ξ)β+1 − (β + 1)[
(1 + ξ)(1− ξ)β + (1− ξ)(1 + ξ)β

]}
. (45)

-0.005

0.000

0.005

0.010

0.015

-1.0 -0.5 0.0 0.5 1.0

δ F
(ξ

)

ξ

Fig. 7. Nondimensional perturbation in vertical force at base
of pile due to elastic deformation at contacts (ε = 0.01 and
β = 2/3, corresponding to Hertzian deformation for contact be-
tween spheres). Continuous line: first order analytical solution
(Eq. (45)); discrete symbols: numerical solution for p = 128.

This is plotted in Figure 7 for the case ε = 0.01, β = 2/3,
γ = 1.2. The results of a numerical simulation (p = 128)
are also shown for comparison. The numerical solution
involved calculating the exact displacement and force dis-
tribution fields and shows good agreement with the first
order theoretical results. As a further check, it is easy to
show that δF (ξ) integrated across the base of the pile is
zero. This is expected since the total weight of the pile is
the same as for the case of the regular lattice.

3.3 Effect of polydispersity

If a range of particle sizes exists in the granular material,
systematic variations in particle diameter with position
in the pile can occur due to size segregation and strat-
ification phenomena occurring during its formation [24].
Stratification in particular can result in strong gradients
in particle size in a direction normal to the free surface.
In this section we present the results of a calculation for
a very simple model of such a sandpile, in which the disc
diameter, d′, varies linearly with distance from the nearest
free surface:

d′(i, j) = d+ a0i (i < j)

= d+ a0j (i ≥ j). (46)

The weights of the discs are however assumed to be iden-
tical. The distances δdi and δdj follow from equation (46)
as

δdi(i, j) = (a0/2) + a0i (i < j)

= a0j (i ≥ j)

δdj(i, j) = a0i (i < j)

= (a0/2) + a0j (i ≥ j). (47)
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r(i, j) =
( a0
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){[
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)
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(
−s
c

)}
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=
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4cs

){
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(
s
c

)
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(
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c

)}
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=
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4cs

){
2j(p− i− j)

(
s
c

)
+ [(i− j)(1 + i+ j) + 2i(p− 2i)]

(
−s
c

)}
(Zone C)

=
( a0

4cs

){
2j(p− i− j)

(
s
c

)
+
[
(1 + 2j)(p − i− j) + (p− i− j)2](−s

c

)}
(Zone D). (49)
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1,p/2p/2,1

Fig. 8. Positions of the four zones required to calculate the
displacement field in a model sandpile with size segregation.

The AC and BC terms required to evaluate equation (14)
can then be written

AC(i, j) =
( a0

4cs

)
(1 + 2i)

(
s
c

)
(i < j)

=
( a0

4cs

)
(2j)

(
s
c

)
(i ≥ j)

BC(i, j) =
( a0

4cs

)
(2i)

(
−s
c

)
(i < j)

=
( a0

4cs

)
(1 + 2j)

(
−s
c

)
(i ≥ j). (48)

When evaluating the integrals in equation (14) the
sandpile can be broken down into four zones, as shown
in Figure 8. In zones A and D, paths PQ and PR
(Fig. 4) do not cross the centreline, whereas in zones
B and C they do and it is then necessary to break the
integrals into two ranges (i < j and j ≤ i, respectively).
Substitution of equation (48) into equation (14) gives
the following displacement field for the four zones:

(See equation (49) above.)

As in the previous section, the displacement vectors of the
support discs have all been taken to be zero.

The partial derivatives required to calculate equa-
tion (32) are listed in Table 1. Path 1 passes only through

Table 1. Partial derivatives required to evaluate equation (32)
for the polydisperse sandpile.

Zone

(
−s

c

)
·

i∂r(i, j)

∂i
a0

2cs

(
s

c

)
·

∂

∂j

(
j∂r(i, j)

∂j

)
a0

2cs

A (p− 2i− j)i− (c2 − s2)i2 −(p− 2j) − (c2 − s2)i

B (Not required) p− 6j − (c2 − s2)i

C (Not required) p− i− 4j − 2(c2 − s2)j

D −(p− i)i− (c2 − s2)ij p− i− 4j − 2(c2 − s2)j

zone A, and the result is

δVI(i, j) =
Wa0

8s2c2d
(p− j)

[
(c2 − s2)

2
(p− j) + j

]
(j = p/2, . . . , p). (50)

Path 2 passes through zones B-D; by separating the line
integral into three ranges one obtains the result

δVI(i, j) =
Wa0

8s2c2d

{
− 2(p− j)j −

3

2
j2 +

1

2
(p− j)2

+ (c2 − s2)

[
3

2
j2 − j(p− j)

]}
(j = 1, 2, . . . , p/2).

(51)

The total vertical force perturbation at point P (Fig. 6)
is obtained by summing the contributions from equa-
tions (50) (putting i = j0, j = p − j0) and (51) (putting
i = p− j0, j = j0):

δV (p− j0, j0) =
Wa0

8s2c2d

{
−(p− j0)j0 −

3

2
j2
0 +

1

2
(p− j0)2

+ (c2 − s2)
[
2j2

0 − j0(p− j0)
]}

(j = 1, 2, . . . , p/2). (52)
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Fig. 9. Nondimensional perturbation in vertical force at base
of pile due to gradient of particle sizes from the centre to the
free surfaces (ε = 0.01). Continuous line: first order analytical
solution (Eq. (53)); discrete symbols: numerical solution for
p = 128.

In nondimensional coordinates this can be written

δF (ξ) =
ε

4 sin2 2θ

[
(4 cos 2θ − 3)(1 + ξ)2

− 2(1 + cos 2θ)(1 + ξ)(1− ξ) + (1− ξ)2
]

(−1 < ξ ≤ 0) (53)

where δF (−ξ) = δF (ξ) and ε = pa0/(2d) is the total
fractional change in disc diameter between the surface and
centre (p/2, p/2) of the pile. Figure 9 shows δF (ξ) for the
case ε = 0.01, i.e. the grains at the centre are 1% larger
than those at the free surfaces. There is seen to be good
agreement with an exact numerical solution calculated for
a pile of size p = 128, with γ = 1.2. The size of the pressure
dip is around 1.2%, and scales in proportion to ε. As with
the elastic deformation case, δF (ξ) averages to zero over
the full width of the pile.

4 Discussion

The first point to be discussed here is the case of random
variations in grain size (Sect. 3.1) and the differences in
the contact force patterns obtained in the present analy-
sis as compared with those obtained by Ouaguenouni and
Roux [21,22]. The starting point in the latter case was
a hexagonal array of slightly polydisperse discs with, for
large samples, approximately three contacts per disc. As
the discs were compacted (a film of lubricant between the
grains was included in the simulations as a computational
device to assist in the approach to the equilibrium state),
the resulting inhomogeneous force network reduced the
number of active contacts to an average of 1.2 per disc,
even with only small amounts of polydispersity. This con-
trasts with the current analysis where two non-zero con-
tact forces are required per disc, regardless of whether the
discs are monodisperse or polydisperse. The reason for
this difference is that in the current case the horizontal
separation of grain centres is chosen to be large enough

for no horizontal contacts to occur. This constraint there-
fore frustrates the formation of the random force chains
observed in references [21,22]. It is not clear at present
what effect this constraint will have on the global stress
field; the main reason for introducing it is that analytical
solutions become feasible.

The pressure dip produced by grain deformation
(Fig. 8) is interesting when compared with the analysis by
Opie and Grindlay [15] which predicted a pressure peak
for a triangular mesh of grains held together by linear
springs. Substitution of the value β = 1 (corresponding
to linear springs) into equation (45) still results in a pres-
sure dip. The main differences between the two models
are firstly that Opie and Grindlay allowed horizontal con-
tacts, and secondly they assumed the floor to be smooth
so that the horizontal inward forces required to stabilise
the pile were provided by tension in the horizontal springs.
Liffman et al. showed that such forces would encourage the
formation of a peak rather than a dip. Tensile forces are
of course not allowed in a cohesionless granular material.
All the forces are compressive in the model considered in
the present paper. The magnitude of the pressure reduc-
tion(around 0.5% at the centre of the pile, for a maximum
grain deformation of 1%) shows that whilst this might be a
significant effect for low modulus materials, it is unlikely
to be the cause of the dip for most of the materials re-
ported in experiments to date. Variations in initial grain
size are a more plausible source of the necessary lattice
distortions.

Previous numerical and analytical studies have already
found that the introduction of polydispersity can intro-
duce significant changes to the stress profiles [3,12]. In [12]
the proposed mechanism was the introduction of horizon-
tal contact forces. It was suggested that the small parti-
cles might lie on the lower layers: only small increases in
particle diameter would then require large horizontal com-
pressive forces in order to squeeze them onto the lattice
established by the small particles. The model described in
the present paper is different for several reasons: no new
contacts are developed; the results are independent of the
stiffness of the contacts; and a dip is produced only if the
large particles are at the centre of the pile.

The latter point follows from the linear relationship be-
tween δF and the size gradient a0 (Eq. (53)). A negative
gradient will result in a force peak at the centre. When
stratification occurs, the larger particles tend to ride on
top of the smaller ones, causing a negative gradient within
the stratum from each avalanche event. Between the strata
the zones of positive gradient appear rather narrow, with
almost a discontinuity in particle size [24]. If the distorted
lattice breaks down across such a discontinuity, then it
would appear likely that the effect of the negative gradi-
ents will dominate the force distribution, giving rise to a
peak at the centre.

Size segregation is a common occurrence in avalanches,
regardless of whether stratification occurs. The larger par-
ticles then tend to end up at the base of the avalanche,
resulting in a positive size gradient parallel to the nearest
free surface, unlike the size distribution assumed in equa-
tion (46). The calculations described in Section 3.3 can be
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repeated for such a case and show that a positive gradi-
ent results in a pressure peak at the centre. The proposed
model therefore seems unable to explain the pressure dip
on the basis of commonly observed phenomena occurring
during the sandpile formation.

There is, however, a simple alternative mechanism for
achieving the positive gradient a0 required to observe a
pressure dip: segregation in the container from which the
discs are poured. It is well known that vibration of a granu-
lar bed containing a range of grain sizes frequently results
in the larger grains being preferentially positioned near
the top of the bed [25]. The first particles to be poured
from the container will therefore in such cases be the larger
ones: these will form the centre of the pile, with progres-
sively smaller grains lying towards the free surfaces. If seg-
regation prior to pouring is indeed an important influence,
it would be easy to verify experimentally.

5 Conclusions

The force transmission properties of simple regular-lattice
models of granular materials have been extended to in-
clude the effect of small inhomogeneities. These can arise
from the displacement of one or more of the support discs
and from variations in the sizes of the discs. Random per-
turbations cause no change in the average force distribu-
tion, at least to first order in the perturbation parame-
ter. Two systematic perturbations have been considered:
elastic deformation of the grain contacts, and size gradi-
ents arising from polydispersity of the granular material.
The former produces a dip in the force distribution at
the centre of the pile. However, if it only distorts the lat-
tice, rather than allowing the possibility of new contacts
forming, then the magnitude of the effect is too small
to explain the dip in experimental results published to
date. The latter produces a significant dip for size gradi-
ents which might be encountered in practice, provided the
larger particles are at the centre of the pile. One plausible
mechanism for this is size segregation prior to forming the
heap.

This research was carried out as part of research contract
GR/L 61781, funded by the Engineering and Physical Sciences
Research Council, and Shell International Oil Products BV.
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